Recent advances in bone regeneration: The role of adipose tissue-derived stromal vascular fraction and mesenchymal stem cells
Yasir Alabdulkarim1, Bayan Ghalimah2, Mohammad Al-Otaibi1, Hadil F Al-Jallad3, Mina Mekhael4, Bettina Willie5, Reggie Hamdy5
1 Department of Experimental Surgery, McGill University; Department of Orthopedic Surgery, Faculty of Medicine, King Fahad Medical City, Riyadh; Division of Experimental Surgery, Department of Surgery, Shriners Hospital for Children, Canadan Unit, Quebec, Canada 2 Department of Experimental Surgery, McGill University; Division of Experimental Surgery, Department of Surgery, Shriners Hospital for Children, Canadan Unit, Quebec, Canada; Department of Orthopaedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia 3 Division of Experimental Surgery, Department of Surgery, Shriners Hospital for Children, n Unit, Quebec, Canada 4 Division of Experimental Surgery, Department of Surgery, Shriners Hospital for Children, n Unit; Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada 5 Department of Experimental Surgery, McGill University; Division of Experimental Surgery, Department of Surgery, Shriners Hospital for Children, n Unit; Department of Pediatric Surgery, Division of Paediatric Orthopaedic Surgery, Montreal Children Hospital, McGill University, Montreal, Quebec, Canada
Correspondence Address:
Reggie Hamdy Shriners Hospital for Children, 1003, Boulevard Decarie, Montreal, Quebec H4A 0A9 Canada
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/jllr.jllr_1_17
|
The management of large bone defects, atrophic nonunions, and other conditions with poor bone formation presents a formidable challenge to the treating physician, as all available techniques of bone reconstruction have drawbacks. Recent advances in stem cell biology, specifically adipose tissue-derived mesenchymal stem cells (ASCs) and adipose tissue stromal vascular fraction (SVF), have opened up new horizons by providing a reliable and abundant source of stem cells with osteogenic potential that can be used in various bone tissue engineering techniques. In this review, several aspects related to the use of ASCs are addressed, such as harvesting and processing of adipose tissue, advantages of ASCs over bone marrow-derived mesenchymal stem cells, mechanism of action and safety of ASCs, and factors affecting the differentiation of ASCs. Published reports on the use of ASCs in critical size defects, nonunions, and distraction osteogenesis are also reviewed. Innovative trends in stem cell research on musculoskeletal pathologies are highlighted, with special emphasis on the increasing evidence that the direct application of freshly prepared SVF processed from adipose tissue into the bone defect to be treated without a prior differentiation or an ex vivo expansion and culture is possible. This highly promising approach may lead to the development of a one-step intraoperative cell therapy. |